Trinôme du second degré - Somme et produit des racines
$1)$Déterminer tous les couples de réels $(x,y)$ tels que :

$\begin{cases}x+y=2\\xy=-4\end{cases}$

On peut écrire :

$\begin{cases}x+y=2\\xy=-4\end{cases}$$\Leftrightarrow$$\begin{cases}y=2-x\\x(2-x)=-4\end{cases}$$\Leftrightarrow$$\begin{cases}y=2-x\\2x-x^2=-4\end{cases}$$\Leftrightarrow$$\begin{cases}y=2-x\\0=x^2-2x-4\end{cases}.$

$2)$ Démontrer que si deux nombres ont pour somme $S$ et pour produit $P$, alors ces deux nombres sont solutions de l'équation:
$X^2-SX+P=0$.
Application: $S=7$ et $P=8$ puis $S=2$ et $P=5$.

Soient $x$ et $y$ deux nombres ayant pour somme $S$ et produit $P$. On a donc, $x+y=S$ et $x\times y=P.$

Première ES Moyen Algèbre et Analyse - Second degré SLDJAA Source : Magis-Maths (Yassine Salim 2017)

Signaler l'exercice